MEC-13
 Control Charts

Outline

- Basic Terms
- Types of Control Charts with their purpose
- Creating Control Charts

Readings

- PMBoK, page 238.
- Rita, pages 305-308.
- Reid, Ch 6.
- Krajewski. Ch 6.
- Lecture Notes.
- Class Notes.

Causes of Variation

Common Causes (aka Random Var):

- Random causes that cannot be identified
- Unavoidable
- Causes like fair wear and tear of machinery, weather changes etc cause slight differences in process variables like diameter, weight, service time, temperature, etc.

Assignable Causes:

- Causes that can be identified and eliminated
- Typical causes are poor employee training, worn tool, machine
 needing repairs, etc.

Types of Data or Characteristics

Attribute or Discrete Data/Characteristics:

Data or characteristics that has a discrete value, cannot be measured and can only be counted, like good or rotten apples, Yes or No answers, number of people, number of broken cookies in a packet, etc

Variable or Continuous Data:
Data or characteristics that can be measured and has a continuum of values, like height, weight, volume etc

Defects \& Defectives

Defect (or Non-Conformity):

- A non-conforming quality characteristic, or a non-conformity, on an item
- Examples: Number of scratches on a tile, number of complaints received, number of bacteria in a petri dish, number of barnacles on the bottom of a boat, number of paint blemishes on auto body observed for an ' x ' number of cars, number of imperfections in bond paper - by area inspected and number of imperfections etc
- Item generally Useable
- Charts used: c \& u Charts

Defective (or Non-Conforming Unit):

- An item having one or more defects
- Examples: a carton with an x number of broken eggs, a packet with an x number of broken tiles; number of samples out of 20 with x, y, z number of nonconforming cables, number of packets with x, y, z number of nonconforming floppy disks when testing a sample of 200 for 25 trials etc
- Item generally Not Useable
- Charts used: n \& np Charts

Control Charts

Control Charts:

- are graphic displays of process data over time and against established control limits, which has a centerline that assists in detecting a trend or run of plotted values toward the either control limit, or change of dispersion either side of the centerline.
- in short, determine whether or not a process is stable or has predictable performance

Control Charts in Project Management

- Although used most frequently to track repetitive activities required for producing manufactured lots, control charts may also be used on projects to monitor various types of output variables, like the cost and schedule variances, volume, and frequency of scope changes, or other management results to help determine if the project management processes are in control
- The project manager and appropriate stakeholders may use the statistically calculated control limits to identify the points at which corrective action will be taken to prevent unnatural performance
- The corrective action typically seeks to maintain the natural stability of a stable and capable process, within the UCL and LCL

Upper \& Lower Specification Limits (USL \& LSL)

- Maximum and Minimum, allowable or acceptable, performance values agreed between the buyer and the seller, and made part of the agreement
- Also known as the "Voice of the Customer"
- There may be penalties associated with exceeding the ULS or falling below the LSL

Upper \& Lower Control Limits (UCL \& LCL)

- UCL and LCL are different from the USL and LSL
- Also known as the "Voice of the Process"
- Determined using standard statistical calculations and principles to ultimately establish the natural capability for a stable process
- For repetitive processes, the control limits are generally set at ± 3 standard deviations around a process mean that has been set at 0 standard deviation
- A process is considered out of control when:
- a data point exceeds a control limit;
- seven consecutive plot points are above the mean; or
- seven consecutive plot points are below the mean.

Basic Types of Variations

Run or Shift:

- Describes the situation when seven or more consecutive points occur on one side of the center line
- Indicates that a special cause has influenced the process
- Points on the center line don't count; they neither break the string, nor add to it.

Trend:

- Describes the situation when 6-7 consecutive points occur in the same direction towards the UCL or LCL
- Indicates that a special cause is acting on the process to cause a trend. Flat line segments don't count, either to break a trend, or to count towards it

Standard Deviation (SD or σ)

- A measure that is used to quantify the amount of Variation or Dispersion of a set of data values

Low SD \Rightarrow Data points tend to be close to the mean (also called the expected value) of the set

High SD \Rightarrow Data points spread out over a wider range of values

- Example:

Data Set: $\quad 2,4,4,4,5,5,7,9$
Mean $=(2+4+4+4+5+5+7+9) / 8=40 / 8=5$
Total Variance $=(5-2)^{2}+(5-4)^{2}+(5-4)^{2}+(5-4)^{2}+(5-5)^{2}+(5-5)^{2}+(5-7)^{2}+(5-9)^{2}$ $=32$

Mean Variance $=32 / 8=4=\sigma^{2}$
$S D=\sigma=\sqrt{4}=2$

Normal Distribution must lie within Specification Limits - 1/2

Say a deliverable is to manufactured at 100 gm within $\pm 10 \mathrm{gm}$ ie USL=110 \& LSL=90. For the production process to support the Specification Limits (SLs), the entire process must lie within the SLs. Otherwise many deliverables will not meet the specifications and will be rejected by own QC and the customer. In this example, clearly the process, which is producing at $\sigma=6 \mathrm{gm}$, is incapable of meeting the SLs, because CLs are outside the SLs

x-bar-S \& x-bar-R Charts ... 1/4

Used when

- there is a shift in the central tendency, i.e. the process mean, and more than one observation are available per time period (sample)
- \mathbf{x}-bar \mathbf{R} used when sample size is 2-9 and and \mathbf{x}-bar \mathbf{S} when sample size ≥ 10

Example 1:

Masonry blocks arrive at the project site by truckloads and are placed into a pile. A sample of 5 blocks is taken from the pile and tested for breaking strength (in tonne). 6 truckloads have so far arrived. Develop x -bar S and x -bar R charts for 3-sigma process if the testing observations are as follows:

MEhsanSaeed

Sample/Pile \#	Block 1	Block 2	Block 3	Block 4	Block 5
1	0.96	0.80	1.00	0.92	0.96
2	1.20	1.00	1.10	1.10	1.00
3	0.80	0.80	0.80	0.80	0.80
4	0.90	0.90	0.90	1.00	1.00
5	0.70	1.00	1.10	1.20	0.70
6	0.96	1.00	0.80	1.00	1.00

x-bar-S \& x-bar-R Charts ... 2/4

Chart Limits for x-bar S:
$=\overline{\bar{x}} \pm z \sigma_{\bar{x}}=\overline{\bar{x}} \pm z \frac{\sigma}{\sqrt{n}}$
where:
$\overline{\bar{x}}=$ mean of sample means, i.e.
the population mean = CL
$Z=$ Quality standard, eg 3
sigma or more, or degree of assurance/confidence
$\sigma_{\bar{x}}=\begin{gathered}\text { standard deviation of } \\ \text { sample means }\end{gathered}=\frac{\sigma}{\sqrt{n}}$
$\sigma=$ standard deviation of population
n = sample size

x-bar-S \& x-bar-R Charts ... 3/4								
$\begin{array}{\|c\|} \hline \text { Pile } \\ \text { (Sample } \\ \hline \end{array}$	Block	Block	Block	Block	Bloc	Sample Mean $\overline{\boldsymbol{X}}$	Sample	Sample
(1)	0.96	0.80	1.00	0.92	0.96	0.928	0.077	0.200
2	1.20	1.00	1.10	1.10	1.00	1.080	0.08	0.200
3	0.80	0.80	0.80	0.80	0.80	0.800	0.00	0.000
4	1.10	1.00	0.90	1.00	1.00	1.000	0.071	0.200
	0.80	1.00	1.10	0.90	0.70	. 900	0.158	0.40
6	0.96	0.90	0.80	1.00	0.90	0.912	0.076	0.200
Here:					an	0.93	0.078	0.20
$\begin{aligned} & \overline{\bar{x}}=0.9 \\ & z=3 \\ & \sigma=0.1 \end{aligned}$	$\begin{gathered} 937^{*} \\ n=! \end{gathered}$	x_{-}	x-bar S Chart			$\begin{aligned} & \text { tere: } \\ & \overline{\bar{x}}=0.93 \\ & A_{2}=0.57 \end{aligned}$	3* ${ }^{\text {x-b }}$	m the tables)
$\begin{aligned} \sigma_{\bar{x}}= & 0.1184436 / \sqrt{5}=0.053 \text { (using the } \\ & \text { formula } \frac{\sigma}{\sqrt{n}} \text {), or } 0.078^{* *} \end{aligned}$							00°	
$\begin{aligned} & \text { Chart Lin } \\ & =\overline{\bar{x}} \pm z 0 \\ & =0.937^{*} \\ & =1.10,0 . \end{aligned}$	mits $\sigma_{\bar{x}}$ $\pm 3 \times 0$ $.78 \text { ton }$	$\begin{aligned} & .053 \text { (or } \\ & \text { ne } \end{aligned}$	$\begin{aligned} & \text { r) } 0.937 \\ & \text { c) } 1.17, ~ \end{aligned}$	$\begin{aligned} & \pm \\ & \pm \times 0 \\ & \hline \end{aligned}$	$\begin{aligned} & .078 * * \\ & \text { Ine } \end{aligned}$	$\begin{aligned} & \text { Chart } \\ & =\overline{\bar{x}} \pm A \\ & =0.937 \\ & =1.05, \end{aligned}$	Limits ${ }_{2} \bar{R}$ $* \pm 0.5$ 0.82 to	$77 \times 0.200^{-}$

x-bar-S \& x-bar-R Charts ... 4/4

R-Charts ... 1/2

$R=$ Sample Range

Used when
there is a shift in the dispersion, or variability, of data, as indicated by the samples Ranges

Example 2:

Same as the for the x-bar S and x-bar R charts, in Example 1. Develop the R Chart for the process

Sample/Pile \#	Block 1	Block 2	Block 3	Block 4	Block 5
1	0.96	0.80	1.00	0.92	0.96
2	1.20	1.00	1.10	1.10	1.00
3	0.80	0.80	0.80	0.80	0.80
4	0.90	0.90	0.90	1.00	1.00
5	0.70	1.00	1.10	1.20	0.70
6	0.96	1.00	0.80	1.00	1.00

R-Charts ... 2/2

Chart Limits for \mathbf{R} Chart:
$C L=\bar{R}$

$$
\text { where: } \bar{R}=\text { mean of samples Ranges }
$$

$U C L=D_{4} \bar{R} L C L=D_{3} \bar{R} \quad D_{3}, D_{4}=\begin{gathered}\text { Constants dependent on sample } \\ \text { size } \mathrm{n}\end{gathered}$
Taking the same example of blocks:

Pile (Sample \#)	Block 1	Block 2	Block 3	Block 4	Block 5		Sample Range R
1	0.96	0.80	1.00	0.92	0.96		0.200
2	1.20	1.00	1.10	1.10	1.00		0.200
3	0.80	0.80	0.80	0.80	0.80		0.000
4	0.90	0.90	0.90	1.00	1.00		0.010
5	0.70	1.00	1.10	1.20	0.70		0.500
6	0.96	1.00	0.80	1.00	1.00		0.200

Chart Limits for \mathbf{R} Chart:
$\mathrm{CL}=\overline{\mathrm{R}}=0.200$
$\mathrm{D}_{4}=2.114, \mathrm{D}_{3}=0.000$ (tables)
$U C L=2.114 \times 0.200=0.423$
LCL $=0.000 \times 0.200=0.000$

x-bar-S ... Another Example - 1/2

Example 3:

On a production line, a sample of 10 items is taken after every hour and the items weighed. The results of last 9 inspections are tabulated.
Develop an x -bar S chart if the plant is producing a 3 -sigma quality level.

$\begin{aligned} & \# \\ & \hline \end{aligned}$					Weig	(gm)					
$\begin{aligned} & \stackrel{\circ}{E} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{gathered} \hline \text { Item } \\ 1 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Item } \\ 2 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Item } \\ 3 \\ \hline \end{gathered}$	Item 4	$\begin{gathered} \hline \text { Item } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Item } \\ 6 \end{gathered}$	$\begin{gathered} \hline \text { Item } \\ 7 \end{gathered}$	$\begin{gathered} \hline \text { Item } \\ 8 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Item } \\ 9 \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Item } \\ 10 \\ \hline \end{gathered}$	Sample Mean (\bar{x})
1	80.30	86.90	108.00	80.30	86.90	108.00	80.30	86.90	108.00	86.90	91.25
2	99.40	89.50	96.40	99.40	89.50	96.40	99.40	89.50	96.40	89.50	94.54
3	95.10	95.90	85.30	95.10	95.90	85.30	95.10	95.90	85.30	95.90	92.48
4	99.00	123.90	100.60	99.00	123.90	100.60	99.00	123.90	100.60	123.90	109.44
5	97.10	98.60	107.70	97.10	98.60	107.70	97.10	98.60	107.70	98.60	100.88
6	97.40	105.50	104.50	97.40	105.50	104.50	97.40	105.50	104.50	105.50	102.77
7	97.90	106.00	95.60	97.90	106.00	95.60	97.90	106.00	95.60	106.00	100.45
8	81.60	99.90	101.10	81.60	99.90	101.10	81.60	99.90	101.10	99.90	94.77
9	90.80	90.10	95.10	90.80	90.10	95.10	90.80	90.10	95.10	90.10	91.81
$\mathrm{UCL}, \mathrm{LCL}=\overline{\bar{x}} \pm Z \sigma_{\bar{x}}=\overline{\bar{x}} \pm z \frac{\sigma}{\sqrt{n}}$							Mean of Sample Means $(\overline{\bar{x}})=$				97.60
											9.1

$$
=97.6 \pm 3 \times \frac{9.1}{\sqrt{10}}=106.23,88.97 \mathrm{gm}
$$

x-bar-S ... Another Example - 2/2

$$
\begin{aligned}
& \mathrm{UCL}, \mathrm{LCL}=\overline{\bar{x}} \pm z \sigma_{\bar{x}}=\overline{\bar{x}} \pm z \frac{\sigma}{\sqrt{n}} \\
& =97.6 \pm 3 \times \frac{9.1}{\sqrt{10}}=106.23,88.97 \mathrm{gm}
\end{aligned}
$$

3 Sigma Constants for x-bar \& R-Charts

MEhsanSaeed	Sample Size (n)	X-bar Ch	Constants	R Char	nstants
		A2	A3	D3	D4
	1				
	2	1.880	2.659	0.000	3.267
	3	1.023	1.954	0.000	2.574
	4	0.729	1.628	0.000	2.282
	5	0.577	1.427	0.000	2.114
	6	0.483	1.287	0.000	2.004
	7	0.419	1.182	0.076	1.924
	8	0.373	1.099	0.136	1.864
	9	0.337	1.032	0.184	1.816
	10	0.308	0.975	0.223	1.777
	11	0.285	0.927	0.256	1.744
	12	0.266	0.886	0.283	1.717
	13	0.249	0.850	0.307	1.693
	14	0.235	0.817	0.328	1.672
	15	0.223	0.789	0.347	1.653
	16	0.212	0.763	0.363	1.637
	17	0.203	0.739	0.378	1.622
	18	0.194	0.718	0.391	1.608
	19	0.187	0.698	0.403	1.597
	20	0.180	0.680	0.415	1.585
	21	0.173	0.663	0.425	1.575
	22	0.167	0.647	0.434	1.566
	23	0.162	0.633	0.443	1.557
	24	0.157	0.619	0.451	1.548
	25	0.153	0.606	0.459	1.541

Difference between p/np and c/u Charts

p/np Charts

- deal with Defectives (nonconformant items)

c/u Charts

- deal with Defects (nonconformities)
- need number of defects only
need number of defects

Example

Situation 1: 2 items fail QC because of 4 faults on one \& 5 on the other
p-Chart \rightarrow There are 2 defectives (non-conformant items)
Situation 2: An item fails QC because of 4 faults
c-Chart \rightarrow There are 4 defects (non-conformities)

	Defects	Defectives
Constant Size of Sample or Sub-Group	\mathbf{u}	\mathbf{p}
Variable Size of Sample or Sub-Group	\mathbf{c}	$\mathbf{n p}$

p \& np Charts

$\mathrm{p}=$ proportion, $\mathrm{np}=$ number proportion

Used when:

- there is a requirement to monitor and control the number, or proportion, of defectives (defective units) in a sample, as follows:
- Defective or not Defective
- Good or Bad
- Broken or Not Broken
- p Chart used when the sample size is varying; therefore, proportion of defectives is considered
- np Chart is used when the sample size is constant; so number of defectives, rather than their proportion, is considered
- Examples: a carton with an x number of broken eggs, a packet with an x number of broken tiles; number of samples out of 20 with x, y, z number of nonconforming cables, number of packets with x, y, z number of nonconforming floppy disks when testing a samples of 200 for 25 trials etc

c \& u Charts ... 1/2

- Used when there is a requirement to monitor and control the number of defects (actual or proportional) in an item or in a measure, as follows:
- Number of dents (actual or proportional) per item
- Number of complaints (actual or proportional) per unit of time (hour, month, year etc)
- Number of tears (actual or proportional) per unit of area (square foot, square meter)
- Number of voids (actual or proportional) per inspection unit in injection molding or casting processes
- Number of discrete components (actual or proportional) that must be resoldered per printed circuit board
- Number of product returns (actual or proportional) per day
- Examples: Actual or proportional number of:- bacteria in a petri dish, barnacles on the bottom of a boat, complaints from the customers, blemishes on auto body observed for 30 samples, imperfections in bond paper - by area inspected and number of imperfections

c \& u Charts ... 2/2

- c Chart used when the sample size is constant; therefore, actual number of defects is considered
- u Chart is used when the sample size is varying; so proportion of defects, rather than their actual number, is considered

c-Chart ... 1/2

Example 4:

A teacher wishes to monitor and control the class attendance. He records the number of absentees over an academic week and the result is Mon: 5, Tue:3, Wed:3, Thu:2, Fri:4. The number of students on roll on these five days remained 40. Develop a control chart.

Explanation: This is a case of defects (absentees) in a unit (class). The sample size (class strength is fixed). \therefore Correct Chart is c

Day	Class Strength i.e. Sample Size (n)	Number of Absentees i.e. Defaults/ Defects (d)
Mon	40	6
Tue	40	4
Wed	40	5
Thu	40	3
Fri	40	5

Cont Limits $=\overline{\boldsymbol{c}} \pm \mathbf{z} \sqrt{\overline{\boldsymbol{c}}}$

where
$\overline{\boldsymbol{c}}=\mathrm{CL} \&$ mean number of defects
z = Quality standard, eg 3 sigma or more, or degree of confidence

[^0]| c-Chart ... 2/2 | | | | | | MEhsansaeed | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ® | | | | LCL | UCL | 12 10 | 11.03 | | |
| M | 40 | 6 | | -2.0 | 10.0 | 產8. | | | |
| T | 40 | 4 | | -2.0 | 10.0 | | | | |
| W | 40 | 5 | | -2.0 | 10.0 | $\frac{8}{8}$ | | | |
| Th | 40 | 3 | | -2.0 | 10.0 | \% | | | |
| F | 40 | 5 | | -2.0 | 10.0 | | | \square | |
| Σ | 200 | 20 | | | | 完 | | | |
| $\begin{gathered} 23 / 5=4.6 \\ \text { absentees per day } \end{gathered}$ | | | | | | ${ }_{2}$ | | | |
| Cont Limits $=\overline{\boldsymbol{C}} \pm \mathbf{Z} \sqrt{\overline{\boldsymbol{C}}}$ | | | | | | | mon | $\mathrm{Tue}_{\text {Sample No } \mathrm{No}}^{\text {(Day) }} \mathrm{The}^{\text {Thu }}$ | ${ }^{\text {fri }}$ |
| Here, the SD $\sqrt{\overline{\boldsymbol{c}}}$ is constant \therefore LCL \& UCL for all observations are also constant, giving straight lines $\overline{\boldsymbol{c}}=\frac{23}{5}=4.6, \mathrm{z}=3$$\mathrm{UCL}, \mathrm{LCL}=4.6 \pm 3 \sqrt{4.6}=11.03 \rightarrow 11,-1.83 \rightarrow 0$ | | | | | | | | | |

u-Chart ... 1/2

Example 5:

A teacher wishes to monitor and control the class attendance. He records the number of absentees over an academic week and the result is Mon: 5, Tue:3, Wed:3, Thu:2, Fri:4. The number of students on roll on these five days were $40,42,42,38,38$. Develop a control chart.
Explanation: This is a case of defects (absentees) in a unit (class). The sample size (class strength is variable). \therefore Correct Chart is \mathbf{u}

Day	Class Strength i.e. Sample Size (n)	Number of Absentees i.e. Defaults/ Defects (d)
Mon	40	5
Tue	42	3
Wed	42	3
Thu	38	2
Fri	38	4

$$
\text { Cont Limits }=\bar{u} \pm z \sqrt{\frac{\bar{u}}{n}}
$$

where

$\overline{\boldsymbol{u}}=\mathrm{CL}$ \& mean proportional number of defects
$z=$ Quality standard, eg 3 sigma or more, or degree of confidence

np-Chart ... 1/2

Example 6: An HOD wishes to monitor \& control the class attendance in his Dept. He selects the 8 BBA classes and observes the number of absentees over the period of time. The results are BBA-1: 20, BBA-2: 22, BBA-3: 28, BBA-4: 22, BBA-5: 27, BBA-6: 20, BBA-7: 18 \& BBA-8: 21.
Assuming that the strength of each class is 40 , develop a control chart.
Explanation: This is a case of defectives (classes) with defects (absentees). The sample size (class strength) is fixed \therefore Correct Chart is
np
Cont Limits $=n \bar{p} \pm z \sigma_{n p}=n \bar{p} \pm z \sqrt{n \bar{p}(1-\bar{p})}$
where
$\overline{\boldsymbol{p}}=$ CL \& mean of sample proportion defectives $=\frac{\text { total defectives }}{\text { total observations }}$
$\boldsymbol{Z}=$ standard deviation of sample means, eg 3 sigma or more, or degree
of confidence
$\sigma_{n \boldsymbol{p}}=$ Std Dev of the Average Proportion Defective $=\sqrt{\boldsymbol{n} \overline{\boldsymbol{p}}(\mathbf{1}-\overline{\boldsymbol{p}})}$
$\boldsymbol{n}=$ mean sample size

$$
\text { Cont Limits }=n \bar{p} \pm z \sigma_{n p}=n \bar{p} \pm z \sqrt{n \bar{p}(1-\bar{p})}
$$

In each case (for each class), sample size \boldsymbol{n} is the same. \therefore the SD $\sqrt{\boldsymbol{n} \overline{\boldsymbol{p}}(\mathbf{1}-\overline{\boldsymbol{p}})}$, and hence LCL \& UCL for each case are also constant, giving straight lines UCL, LCL $=40 \times 0.556 \pm 3 \sqrt{40 \times 0.556(1-0.556)}=31.68 \rightarrow 32,12.82 \rightarrow 13$

p-Chart ... 1/2

Example 7: An HOD wishes to monitor \& control the class attendance in his Dept. He selects the 8 BBA classes and observes the number of absentees over the period of time. The results are BBA-1: 20, BBA-2: 22, BBA-3: 28, BBA-4: 22, BBA-5: 27, BBA-6: 20, BBA-7: 18 \& BBA-8: 21. The class strength was $40,42,36,44,41,35,44 \& 43$ respectively.

Explanation: This is a case of defectives (classes) with defects (absentees). The sample size (class strength) is variable \therefore Correct Chart is \mathbf{p}.
where

$$
\text { Cont Limits }=\bar{p} \pm z \sigma_{p}=\bar{p} \pm z \sqrt{\frac{\bar{p}(1-\bar{p})}{n}}
$$

$$
\overline{\boldsymbol{p}}=\mathrm{CL} \& \text { mean of sample proportion defectives }=\frac{\text { total defectives }}{\text { total observations }}
$$

$\boldsymbol{Z}=$ standard deviation of sample means, eg 3 sigma or more, or degree

\boldsymbol{n} = mean sample size

p-Chart ... 2/2							MEhsansee
$\left.\left\lvert\, \begin{array}{l} \text { Defe } \\ \text { ctive } \\ \text { BBAA } \end{array}\right.\right]$	Sample (Class) Size (n)	Def- ects (D)	Prop Defects (D/n)	LCL	UCL	 Con sample y, and	
1	40	20	0.14	-0.10	0.30		
2	42	22	0.10	-0.10	0.30		-
3	36	28	0.06	-0.11	0.31		
4	44	22	0.10	-0.10	0.30		
5	41	27	. 06	-0.12	0.32		
6	35	20	0.15	-0.10	0.30		
7	44	18	0.17	-0.11	0.31		
8	43	21	0.11	-0.11	0.31		
Σ	325	178					BBA-1 BBA- 2 BBA-3 BBA-4 BBA-5 BBA-6 BBA-7 BBA-8 Defective No (BBA Class)
$\overline{\boldsymbol{p}}$	$178 / 3$ 0.5						Limits $=\overline{\boldsymbol{p}} \pm z \sigma_{p}=\overline{\boldsymbol{p}} \pm z \sqrt{\frac{\overline{\boldsymbol{p}}(1-\bar{p})}{n}}$
In each case (for each class), the sample size \boldsymbol{n} varies. \therefore the SD $\sqrt{\frac{\overline{\boldsymbol{p}}(1-\overline{\boldsymbol{p}})}{\boldsymbol{n}}}$, and hence LCL \& UCL for each case vary, and form wiggly lines							

c-Chart ... 1/2

Example 8:

100 workers are transported to the project site daily in buses. The number of workers missing the buses in the last 10 days has been observed to be $9,8,5,7,9,8,9,4,9,12$. Develop a 3-Sigma c-Chart for the defaulting workers

Day	Number of Workers i.e. Sample Size (n)	Those who missed the buses i.e. Defaults/ Defects (d)
1	100	9
2	100	8
3	100	5
4	100	7
5	100	9
6	100	8
7	100	9
8	100	4
9	100	9
10	100	12

Cont Limits $=\overline{\boldsymbol{c}} \pm \mathbf{z} \sqrt{\overline{\boldsymbol{c}}}$
where
$\overline{\boldsymbol{c}}=$ CL \& mean number of defects
$\mathbf{z}=$ Quality standard, eg 3 sigma or more, or degree of confidence

u-Chart ... 1/2

Example 9:

A construction company transports its workers to project site in buses.
The number of workers on the company's register over the last 10 days, and those who missed the buses are as tabulated. Develop a 3-Sigma uChart for the defaulting workers

Day	Number of Workers i.e. Sample Size (n)	Those who missed the buses i.e. Defaults/ Defects (d)
1	98	9
2	100	8
3	100	5
4	102	7
5	100	9
6	99	8
7	99	9
8	100	4
9	100	9
10	102	12

Cont Limits $=\overline{\boldsymbol{u}} \pm z \sqrt{\frac{\bar{u}}{n}}$
where
$\overline{\boldsymbol{u}}=\mathrm{CL}$ \& mean proportional number of defects
$\mathbf{z}=$ Quality standard, eg 3 sigma or more, or degree of confidence

np-Chart ... 1/2

Example 10:

On a large construction project, 10 boxes of electrical switches have arrived. Each box has 1,000 switches. Randomly, the procurement manager picks up 20 switches each from the 10 boxes. He finds $3,3,4$, $2,1,3,2,3,2 \& 1$ switches defective, in the ten boxes. Develop a 3sigma np-Chart for the sampling done.

$$
\begin{aligned}
& \quad \text { Cont Limits }=\boldsymbol{n} \overline{\boldsymbol{p}} \pm \boldsymbol{z} \sigma_{\boldsymbol{n p}}=\boldsymbol{n} \overline{\boldsymbol{p}} \pm \mathbf{Z} \sqrt{\boldsymbol{n} \overline{\boldsymbol{p}}(\mathbf{1}-\overline{\boldsymbol{p}})} \\
& \text { where } \\
& \overline{\boldsymbol{p}}=\mathrm{CL} \text { \& mean of sample proportion defectives }=\frac{\text { total defectives }}{\text { total } \text { observations }} \\
& \boldsymbol{z}=\text { standard deviation of sample means, eg } 3 \text { sigma or more, or degree } \\
& \quad \begin{array}{l}
\text { of confidence }
\end{array} \\
& \boldsymbol{\sigma}_{\boldsymbol{n} \boldsymbol{p}}=\text { Std Dev of the Average Proportion Defective }=\sqrt{\boldsymbol{n} \overline{\boldsymbol{p}}(\mathbf{1}-\overline{\boldsymbol{p}})} \\
& \boldsymbol{n}=\text { mean sample size }
\end{aligned}
$$

In each case (for each box), the sample size \boldsymbol{n} is the same. \therefore the SD $\sqrt{\boldsymbol{n} \overline{\boldsymbol{p}}(\mathbf{1}-\overline{\boldsymbol{p}})}$, and hence LCL \&UCL for each case are also constant, giving straight lines UCL, LCL $=20 \times 0.12 \pm 3 \sqrt{20 \times 0.12(1-0.12)}=6.76 \rightarrow 7,-1.96 \rightarrow 0$

p-Chart ... 1/2

Example 11:

On a large construction project, 10 boxes of electrical switches have arrived. Each box has 1,000 switches. Randomly, the procurement manager picks up $22,20,18,18,18,20,15,18,18 \& 20$ switches from the 10 boxes. He finds $3,2,1,2,1,3,2,1,2 \& 3$ switches defective, respectively, in the ten boxes. Develop a 3-sigma p-Chart for the sampling done.

$$
\text { Cont Limits }=\bar{p} \pm z \sigma_{p}=\bar{p} \pm z \sqrt{\frac{\bar{p}(1-\bar{p})}{n}}
$$

where
$\overline{\boldsymbol{p}}=$ CL \& mean of sample proportion defectives $=\frac{\text { total defectives }}{\text { total observations }}$ $\boldsymbol{Z}=$ standard deviation of sample means, eg 3 sigma or more, or degree $\left.\quad \begin{array}{c}\text { of confidence } \\ \boldsymbol{\sigma}_{\boldsymbol{p}}= \\ \text { Std Dev of the Average Proportion Defective }= \\ \frac{\overline{\boldsymbol{p}}(\mathbf{1}-\overline{\boldsymbol{p}})}{\boldsymbol{n}}\end{array}\right)$
$\boldsymbol{n}=$ mean sample size

p-Chart ... 2/2							mEhsansae
$\begin{aligned} & \text { Df } \\ & \text { Box } \\ & \text { No } \\ & \hline \end{aligned}$	Sample Size (n)	Defects (d)	Prop Defects (d/n)	LCL	UCL	0.35 0.30 0.25	$\overbrace{}^{0.30} 0.30 \underbrace{0.31} 0.30 \overbrace{}^{0.32} 0.300^{0.31} 0.310 .310 .30$
1	21	3	0.14	-0.10	0.30		
2	20	2	0.10	-0.10	0.30		
3	18	1	0.06	-0.11	0.31		
4	20	2	0.10	-0.10	0.30		
5	17	1	0.06	-0.12	0.32		
6	20	3	0.15	-0.10	0.30		
7	18	3	0.17	-0.11	0.31		
8	18	2	0.11	-0.11	0.31		
9	18	1	0.06	-0.11	0.31		
10	20	1	0.05	-0.10	0.30		
Σ	190	19					
$\overline{\boldsymbol{p}}$	19/190=0.100						Limits $=\overline{\boldsymbol{p}} \pm \boldsymbol{z} \sigma_{\boldsymbol{p}}=\overline{\boldsymbol{p}} \pm \boldsymbol{z} \sqrt{\frac{\bar{\rho}(1-\bar{p})}{n}}$

In each case (for each box), the sample size \boldsymbol{n} varies. \therefore the SD $\sqrt{\frac{\overline{\boldsymbol{p}}(\mathbf{1}-\overline{\boldsymbol{p}})}{n}}$, and hence LCL \& UCL for each case vary, and form wiggly lines

[^0]: MEhsanSaeed

